

MAXSCORE: MUSIC NOTATION IN MAX/MSP

Nick Didkovsky Georg Hajdu

Rockefeller University, New York

www.algomusic.com

didkovn@mail.rockefeller.edu

Hochschule für Musik und Theater Hamburg

www.georghajdu.de

georg.hajdu@hfmt-hamburg.de
ABSTRACT

This paper presents MaxScore, a Max object that
provides standard western music notation in Max/MSP
(Puckette, Zicarelli). MaxScore supports a rich set of
Max messages that allows the user to populate a score
with notes, query note properties, transform notes, play a
score through Max/MSP via a well-defined instrument
interface, and export a score in a variety of popular
notation formats including MusicXML and LilyPond
(Nienhuys). Transcription of Max-generated music is
provided as well as note entry and editing by mouse or
under program control. MaxScore supports user-defined
plug-ins written in Java. We also present two
applications, which utilize MaxScore: one that generates
compositions in real-time, and another, which performs
spectral transcription. MaxScore is written in Java
Music Specification Language (Didkovsky, Burk) but
requires no Java programming to use.

1. INTRODUCTION

Max/MSP is a widely used graphical environment for

creating computer music and multimedia works using a

paradigm of graphical modules and connections.

Missing from Max is the capability to utilize standard

western music notation directly within the Max

environment. Java Music Specification Language is a

Java API for music composition and interactive

performance, and includes a notation package. While

Max’s Java API can be used to open JMSL’s

“ScoreFrame” notation editor (Didkovsky, Crawford),

JMSL is not designed to receive Max messages or be

further controlled by Max.

MaxScore is a Max object written in JMSL, which

provides music notation directly within the Max

environment. It supports a rich set of Max messages to

create a score, populate it with notes in a variety of ways

including: a) mouse entry, b) programmatically using its

“addnote” message, and c) by using its transcriber.

MaxScore also provides messages to transform existing

musical material and to play back through Max so the

score can control MSP patches. The MaxScore is

rendered in its own Max LCD window (canvas), or can

be embedded directly into the Max patcher (bcanvas).

LCD was chosen in part because its set of drawing

messages and event handling mapped efficiently from

the commands used by JMSL’s score canvas.

Traditional music notation provides the Max composer

with a rich set of possibilities for creating new work. It

provides a bridge to a legacy of traditional musical

practice and as such can provide performance materials

in a format that is immediately understood by an

enormous population of musicians playing traditional

instruments. We also believe that there are times when

the composer may find it more appropriate or more

comfortable to specify compositional behavior in

traditional notation. The availability of music notation

significantly augments the range of works possible with

Max.

2. MAXSCORE FEATURES

Notes can be added to a MaxScore with the addNote

message, which takes as arguments the duration, pitch,

amplitude, and hold time of a note (where duration of 1

is a quarter note, 0.5 is an eighth note, 0.3333 is an 8
th

triplet, etc). Of course the user could alternatively

represent durations as whole number ratios by

performing the division at the Max level and sending the

floating-point quotient to addNote’s duration parameter.

JMSL’s new auto-beaming feature beams notes to the

beat of the current time signature as they are entered.

Figure 1. MaxScore’s addNote message populates the score

under program control.

Mouse entry of notes is also possible. By right/ctrl-

clicking on a staff a note is entered. The user can select

notes for copying, deletion, or alteration by dragging the

mouse. Selection can also be done programmatically

using the selectNote message which takes as arguments

the measure number, staff number, track number, and

note number of the note to be selected.

JMSL’s transcriber (Didkovsky 2004) is also available

to MaxScore, and can transcribe arbitrarily generated

musical events. New to JMSL is a LilyPond exporter,

which allows users to have their scores typeset by

LilyPond music engraving software.

Figure 2. Two measures of Max-generated music transcribed

by MaxScore are shown at the top half of the figure. In the

bottom half of the figure the same two measures are shown,

typeset by LilyPond after being exported by MaxScore.

JMSL’s Transforms are available to MaxScore as well.

Unary Copy Buffer Transforms operate on notes stored

in the Copy Buffer. The results of the transform are

pasted into the score by the user. Binary Copy Buffer

Transforms operate on two distinct copy buffers and

again, results are pasted into the score by the user. Note

Properties Transforms operate in-place on selected notes

(such as transposition or adding expressive marks).

Finally, Score Operators perform arbitrary operations on

a Score. As is the case with standard JMSL, MaxScore

has the capability to scan the Java classpath for plug-ins

that are of these types, and can populate a selection list

of valid plug-ins. Selecting one from the list executes

the plug-in.

Figure 3. MaxScore supports JMSL plug-ins

Playback through Max/MSP is made possible by the new

MaxScoreInstrument object. When a new MaxScore is

created, each staff is assigned a new instance of a

MaxScoreInstrument. When played back, these

instruments pipe their performance data out MaxScore’s

second outlet, where it can be sent to MSP patches. The

data is in the form of an ordered list, where the values

are: instrument index, maxclock timestamp, pitch, amp,

holdtime, “event flag”, followed by additional user

defined parameters unique to the instrument. The event

flag indicates whether the note is tied in or not. Tied

notes can be used to update timbral parameters during

sustained sounding of an instrument. The MaxScore help

file includes a working example that users may modify.

Information about notes in a MaxScore is available

through a variety of querying messages. Some of these

messages report terse information such as

getNotePosition which dumps the measure number, staff

number, track number, and note index of selected note,

while other messages like the more general getNoteInfo

dumps a rich set of properties in XML format which the

Max user may parse for details.

3. MAXSCORE, SOME TECHNICAL DETAILS

MaxScore is written in Java and uses Java Music

Specification Language’s “score” package to provide

both notation and musical scheduling. No Java

programming is required of the Max user, as Max

messages provide the user with control over the score

and its contents. MaxScore extends MaxObject and so,

can be imported into Max with the mxj message.

MaxScore renders to a Max LCD object. Our task was

to provide JMSL with a graphics environment whose

drawing commands would ultimately be sent out to

Max. Since JMSL renders a Score to any Java class that

implements the ScoreCanvas interface, we implemented

a MaxScoreCanvas, which holds a reference to a Java

Graphics subclass we called MaxScoreGraphics. When

MaxScore creates a new JMSL Score, MaxScore hands

the score a new MaxScoreCanvas as well as a reference

to itself. MaxScoreGraphics receives the low level

drawing commands from JMSL’s score renderer. But

instead of drawing to Java components, it passes these

commands up to MaxScore which in turn sends

messages to Max/LCD.

For example, Java’s Graphics line drawing method was

overridden in MaxScoreGraphics with:

public void drawLine(int x1, int y1, int x2, int y2) {

 if (maxScore != null) {

 maxScore.renderLine(x1, y1, x2, y2);

 }

 }

The code fragment above shows that the Java

Graphics.drawLine() command is passed up to a

reference to MaxScore object. MaxScore defines

renderLine() as follows, providing the conduit to Max:

void renderLine(int x1, int y1, int x2, int y2) {

 String cmd = "linesegment";

 outlet(0, new Atom[] {

Atom.newAtom(cmd),

Atom.newAtom(x1),

Atom.newAtom(y1),

Atom.newAtom(x2),

Atom.newAtom(y2)

});

 }

To put it in somewhat anthropomorphic terms, JMSL

itself has no idea that it is rendering a Score to Max. It

renders to a Graphics object as it usually does, not

knowing that this graphics object punts the commands

off to Max via MaxScore. This makes for a very fast

rendering engine, as only simple graphics commands are

used (as opposed to an alternative design that might use

a non-realtime rendering engine such as Lilypond). We

were pleased that the MaxScore project could leverage

the score notation already available in JMSL with only a

few new classes required to bridge it to Max.

Scheduling of playback is handled by JMSL’s

hierarchical scheduler (Didkovsky, Burk, 2001). JMSL

uses a network of parent/child relationships of

“Composable” objects that pass timestamps up and down

a scheduling hierarchy. Java threads are responsible for

scheduling, but JMSL absorbs the vagaries of thread

timing by implementing the notion of “advance time”.

As long as timing jitter varies by less than this advance

time window, scheduling is solid. As such, the

timestamps passed out of the MaxInstrument to the

MaxMSP environment may be slightly in the future (as

long as they are not in the past, timing is solid).

4. TWO APPLICATIONS OF MAXSCORE

Embedded in Max/MSP, an environment which has

served composers and computer musicians for more than

18 years and is most likely, for its visual paradigm, the

most popular music programming environment,

MaxScore fills a gap in Max’s functionality which up to

this date offers only very rudimentary support for

symbolic notation (nslider). MaxScore lends itself to a

multitude of applications, of which real-time

composition and notation are probably the most

complex.

While music transcription of algorithmically generated

music was originally done by hand (Ames), and later by

notation programs such as Finale and Sibelius, or

composition tools such as OpenMusic (Agon et al), the

real challenge lies in performing such tasks in real time.

Although OpenMusic (OM) and its cousin PWGL (a

further development of OM’s predecessor PatchWork)

(Laurson, Norilo) have reached (near) real-time

capability thanks to modern computers, MaxScore has

the advantage of working within Max without requiring

inter-application messages to be sent via MIDI or

OpenSoundControl.

MaxScore behaves like a hierarchical matrix whose

elements (measure, staff, track, note, interval) can be

queried with specific messages such as “getMeasureInfo

0” or “getNoteInfo 2 5 1 5” (info for 6
th

 note of the 2
nd

track of the 6
th

 staff of the 3
rd

 measure). The output is in

XML format, which after parsing, can be further

processed in Max. At this stage, all of the 22 fixed

attributes of a note can be changed on the fly,

interactively or programmatically with messages such as

setPitch or setTiedOut. In addition, an unlimited number

of extra note dimensions can be defined by the user for

real-time control of sound synthesis, video processing

etc. Relying on its own scheduler, MaxScore will

sequence its note events and act as timeline capable of

sending messages to Max much like Keith Hamel’s

Notability, but—once again—all within the Max

environment.

Several applications can be conceived: Music can now

be transcribed into rich music notation by taking

secondary attributes like articulation and dynamic

change into consideration. For instance, a Max patch

could analyze the amplitudes of a series of notes and

apply crescendo or decrescendo wedges to the notation

accordingly. Aficionados of microtonal music will find

the text attribute convenient, which can be utilized to

show cent deviations in addition to the built-in quarter-

tone accidentals. Playback of microtonal music benefits

from the floating-point resolution of the pitch attribute.

Figure 4. Displaying music notation inside a Max patcher can

be used for music analysis, among other applications. The

bcanvas abstraction displays an overtone series OpenMusic-

style with microtonal deviations printed on top of the notes.

Other types of messages are used to control music

rendering: the nextPage and previousPage messages are

practical when MaxScore is employed in a situation

where musicians turn their pages interactively with a

pedal or other means. The integration of the MaxScore

canvas into a Max bpatcher, finally, permits the use of

several instances within a single Max patcher window,

which, among other applications, is very useful for

educational purposes.

4.1. Ivresse ‘84

Georg Hajdu commissioned Nick Didkovsky to create

MaxScore and received funding support from “Bipolar –

German Hungarian Cultural Projects”. Hajdu used

MaxScore extensively while it was in development. The

composition Ivresse ’84 represents the first real-time

composition realized with MaxScore and was premiered

in September 2007 at the Music in the Global Village

conference in Budapest, Hungary (Hajdu 2007). The

composition, performed by violinist János Négyesy and

the European Bridges Ensemble, is based on John

Cage’s first Freeman etude (Cage 1992). Before

subjecting his music to an algorithmic process, the

etude, which was written in space notation had to be

transcribed by JMSL into standard music notation. The

resulting 120 measures (with a duration of 2 seconds

each) were categorized according to the similarity of

their gestures.

Figure 5. Excerpt from Ivresse ’84 for violin and 4 laptop

performers.

Based on these judgments, the composition was

reassembled in real-time by a stochastic process

controlled by the conductor and presented in standard

music notation to the violinist who sight-read the music.

Ivresse ’84 employs an additional mxj object

(JScoreTranslator) created by Hungarian composer

Adam Siska (Siska) to bridge between MaxScore and

Quintet.net, Hajdu’s networked multimedia performance

environment (Hajdu 2005)

4.2. Macaque

Originally designed as a bridge between MaxMSP and

Lemur, the Mac OS 9 legacy software for partial-

tracking analysis (Fitz, Haken), the spectral transcription

software Macaque was originally created by Hajdu to

transcribe partial-tracking data into standard music

notation via Finale’s Enigma format. The process was

far from trivial and required several steps between Max

and Finale before it was completed. Utilizing

MaxScore’s transcription method and score rendering,

Macaque has become an integrated environment capable

of reading SDIF 1TRC files generated by SPEAR

(Klingbeil) and other applications, manipulating their

content and translating the data into standard music

notation.

Figure 6.Macaque interface showing spectrum (top of figure)

and its MaxScore transcription (bottom of figure).

5. CONCLUSION

MaxScore brings rich music notation to Max/MSP, the

lingua franca of the computer music community. By

opening the door to musicians and composers trained in

reading music, MaxScore has the potential to build

bridges between musical communities.

The challenge lies in building elegant systems allowing

musicians to read music created programmatically in

real-time off their computers, hence staging a complex

social and technical interplay between performer,

composer, and machine.

MaxScore is freely available for download at

http://www.algomusic.com/maxscore/ .

6. REFERENCES

[1] Agon, C., Assayag, G., Laurson, M. and

Rueda, C. (1999) "Computer Assisted.

Composition at Ircam: PatchWork &

OpenMusic", Computer Music Journal 23(5).

59 - 72

[2] Ames, C. (1987). Automated Composition in

Retrospect. Leonardo, 20(2): pp. 169-185.

[3] Cage, J. 1992. The Freeman Etudes. Book 1
& 2. Edition Peters.

[4] Didkovsky, N., Burk, P.L., (2001). "Java Music

Specification Language, an introduction and

overview." Proceedings of the International

Computer Music Conference, pp. 123-126.

[5] Didkovsky, N. (2004). "Java Music

Specification Language, v103 update."

Proceedings of the International Computer

Music Conference, pp. 742-745.

[6] Didkovsky, N. and L. Crawford (2007). "Java
Music Specification Language and Max/MSP."
Proceedings of the International Computer
Music Conference. pp. 620-623

[7] Fitz, K., and Haken, L. (1997). Sinusoidal

modeling and manipulation using Lemur.

Computer Music Journal 20(4): 44-59.

[8] Hajdu, G. (2005). Quintet.net: An environment
for composing and performing music on the
Internet. Leonardo Journal 38(1).

[9] Hajdu, G. (2007). “Playing Performers.”

Proceedings of the Music in the Global Village

Conference, Budapest, Hungary, pp. 41-42.

[10] Laurson, M. and Norilo, V. (2006). “From Score-

Based Approach Towards Real-Time Control in

PWGLSynth,” Proceedings of the International

Computer Music Conference, pp. 29–32.

[11] Klingbeil, M. 2005. “Software for spectral

analysis, editing, and synthesis.” Proceedings

of the International Computer Music

Conference.

[12] Nienhuys, H., Nieuwenhuizen, J., “LilyPond, A

System for Automated Music Engraving”.

Proceedings of the XIV Colloquium on Musical

Informatics (XIV CIM 2003), Firenze, Italy,

May 8-9-10, 2003

[13] Puckette, M., Zicarelli, D. MAX Development

Package. Opcode Systems, Inc., 1991

[14] Schwarz D., M. Wright. (2000) "Extensions and

Applications of the SDIF Sound Description

Interchange Format." Proceedings of the

International Computer Music Conference.

[15] Siska, A. (2007). “Pipelining between JMSL and

Quintet.net.” Proceedings of the Music in the Global

Village Conference, Budapest, pp. 28-30.

	Index
	ICMC 2008 Home
	Conference Info
	Welcome from the ICMA President
	ICMA Officers
	Welcome from the ICMC 2008 Organising Committee
	ICMC 2008
	Previous ICMCs
	ICMC 2008 Paper Panel & Music Curators
	ICMC 2008 Reviewers
	ICMC 2008 Best Paper Award

	Sessions
	Monday, 25 August 2008
	Languages and Environments 1
	Interaction and Improvisation 1
	Sound Synthesis
	Computational Modeling of Music
	Demos 1
	Posters 1
	Interaction and Improvisation 2
	Aesthetics, History, and Philosophy 1

	Tuesday, 26 August 2008
	Miscellaneous
	Algorithmic Composition Tools 1
	Network Performance
	Computational Music Analysis 1
	Panel 1: Reinventing Audio and Music Computation fo ...
	Panel 2: Towards an Interchange Format for Spatial ...

	Wednesday, 27 August 2008
	Studio Reports 1
	Mobile Computer Ensemble Play
	Demos 2
	Posters 2
	Algorithmic Composition Tools 2
	Interface, Gesture, and Control 1

	Thursday, 28 August 2008
	Interface, Gesture, and Control 2
	Languages and Environments 2
	Spatialization 1
	Computational Music Analysis 2
	Panel 3: Network Performance
	Demos 3
	Posters 3

	Friday, 29 August 2008
	Sound Processing
	Aesthetics, History, and Philosophy 2
	Interface, Gesture, and Control 3
	Spatialization 2
	Algorithmic Composition Tools 3
	Studio Reports 2

	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

	Papers
	All papers
	Papers by Sessions

	Topics
	critical theory/philosophy of technology, postmodern cy ...
	sociology/anthropology of everyday sounds, situated per ...
	history of computer music, women and gender studies, ed ...
	philosophy/culture/psychology, music information retrie ...
	electroacoustic music composition, aesthetics of music, ...
	singing analysis/synthesis, music analysis/synthesis, v ...
	interactive and real-time systems and languages, music ...
	human-computer interaction, sound synthesis/analysis, i ...
	interaction design, computer music, performance art, el ...
	physical interface design, performance systems, gesture ...
	language/education/history/sociology of computer music, ...
	composition systems and techniques, languages for compu ...
	programming languages/systems, audio synthesis/analysis ...
	composition, music cognition, music informatics, human- ...
	music information retrieval, audio signal processing, p ...
	computational musicology, music cognition, music and AI ...
	music cognition, rhythm/meter/timing/tempo, computation ...
	music information retrieval, audio content analysis, to ...
	spatial audio, audio signal processing, auditory percep ...
	physical modelling, spatial audio, room acoustics, aura ...
	sonic interaction design, physics-based sound synthesis ...
	audio signal processing, sound synthesis, acoustics of ...
	audio signal processing, acoustics, software systems
	physics-based sound synthesis, virtual room acoustics
	composition, music analysis, software for pedagogy
	PANEL: Towards an Interchange Format for Spatial audio ...
	PANEL: Network Performance
	PANEL: Reinventing Audio and Music Computation for Many ...

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using the Acrobat Reader
	Configuration and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Nick Didkovsky
	Georg Hajdu

